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Emerging Applications s

% Resource competition degrades end-to-end performance
independent optimization, e.g., RAN and TN, fails in guaranteed performance
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Network Slicing

s Enable customized end-to-end slice for each application

. performance and functional isolation, SLA guarantee
. customization in performance, function, security, etc.
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Service Configuration

% Configure individual slice settings to maintain SLA

. for example, cross-domain resources, attributes* Deterministic communication;
Group communication support;

i ~di i ion based delivery;
. High-dim contextual states, e.qg., traffic, users Location based message delvery
. . . Mission critical support;
. long configuration interval, e.g., hours (non-markov) MMTel support;

Network slice customer network
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put dth Simultaneous use of network slice
Support for non-IP traffic;
Synchronicity;

slice attributes*
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*Generic Network Slice Template, V 7.0, GSM Association, June 202



https://www.gsma.com/newsroom/wp-content/uploads/NG.116-v7.0.pdf

State-of-the-Art  m——

s Offline approaches
. design the policy in offline environments, e.g., simulator or dataset
. offline approaches [1, 2] suffer simulation-to-reality discrepancy
. the discrepancy between offline simulators and real-world networks
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[1] Marquez, C., et. al. How should | slice my network? A multi-service empirical evaluation of resource sharing efficiency. Mobicom 2018 (pp. 191-206).
[2] Salvat, J.X., et. al. Overbooking network slices through yield-driven end-to-end orchestration. CONEXT 20718 (pp. 353-365).



State-of-the-Art  m——

s Online approaches

. learn the policy via interacting with real-world networks
. online ML methods [3] suffer safety and sample-efficiency issue
. sample-efficiency: long configuration interval in real-world networks

. safety: unpredictable configuration actions from DNN-parameterized policies
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[3] Shi, J., et. al. Adapting wireless mesh network configuration from simulation to reality via deep learning based domain adaptation. NSD/ 2021 (pp. 887-901).



Atlas m—

R/

% The first integrated offline-online network slicing

. Atlas automates service configuration of individual slices

. Atlas achieves safe and sample-efficient learn-to-configure in three integrated stages
. stage 1: learning-based simulator, for reducing sim-to-real discrepancy

. stage 2: offline training, for training an offline policy

. stage 3: online learning, for learning the online policy
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Stage 1 m———

Learning-based Simulator

objective: automatically reduce the simulation-to-reality discrepancy
action: adjust the simulation parameters, e.g., base pathloss
rationale: these parameters might not accurate enough
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Stage 1 m———

% Learning-based Simulator

. problem: minimize KL divergence between simulation and system measurement
. challenge: unknown correlation between KL divergence and high-dim simulation parameters
. solution: new Bayesian learning method

. scalable Bayesian neural network
. parallel Thompson sampling
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Stage 2 e

s Offline Training
. objective: offline train a policy in the augmented simulator
. problem: minimize resource usage under requirement of percentile QoE
. challenge: unknown correlation between slice QoE and configuration parameters
. solution: constraint-aware method and Bayesian learning method
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Stage 3 m———

% Online Learning

. objective: online learn the policy in real-world networks
. rationale: resolve the sim-to-real discrepancy eventually
. problem: minimize resource usage under requirement of percentile QoE
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Stage 3 m——

% Online Learning
challenge: assure safety (SLA violation) under limited online transitions

. solution:
. sample-efficient GP model to learn sim-to-real gap only

. conservative acquisition function with regret bound
hybrid multiplier update with both offline and online transitions
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System Implementation m—

% Testbed

User: OnePlus 9 5G Agent: PyTorch 1.5 (128x64x32)
RAN: OpenAirinterface w/ USRP (LTE B7) TN: OpenDayLight w/ SDN switch
CN: OpenAir-CN w/ CUPS Edge: Dockers collocated with SPGW-U

% Virtualization
. RAN: FlexRAN (exclusive PRB assignment) + customized MCS offset
. TN: OpenFlow with configurable bandwidth via “meter”

. CN: isolated SPGW-U container per slice

. EN: docker container via “docker update”
s Applications

. Video analytics at the edge

. send 540p image to edge server

. the server run ORB to extract features

. requirement: 300ms round-trip latency




Stage 1 Performance

+» Atlas reduces sim-to-real discrepancy
. obtains 81.2% discrepancy reduction under 0.12 parameter distance
. more than 24.5% reduction than existing Bayesian optimization method (GP)
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Methods Sim-to-Real Discrepancy | Parameter distance Best simulation parameters
Original Simulator 1.38 0 [38.57, 5.0, 9.0, 0.0, 0.0, 0.0, 0.0]
Aug. Simulator, GP 0.31 0.16 [38.57, 1.44, 7.48, 5.07, 9.23, 6.02, 6.47]

Aug. Simulator, Ours 0.26 0.12 [38.76, 0.68, 8.93, 5.03, 8.93, 2.16, 3.10]

Table 4: Details of offline learning-based simulator



Stage 2 Performance

s Atlas trains the policy with reduced resource usage
. obtains up to 47.5% usage reduction than existing solutions

. better Pareto boundary performance
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Shi, J., Sha, M. and Peng, X., 2021. Adapting wireless mesh network configuration from simulation to reality via deep learning based domain adaptation. NSD/ 21.



Stage 3 Performance

R/

% Atlas reduces usage and QoE regret

. obtains up to 63.9% reduction on the regret of resource usage
. obtains up to 85.7% reduction on the regret of slice QoE
. results show the necessity of integrating three stages
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Summary —

% End-to-end slicing is necessitated to assure diversified performance of slices

We proposed Atlas, the first integrated offline-online network slicing system that
automates the service configuration of individual slices

Atlas addressed practical challenges of online machine learning, i.e., safety and
sample-efficiency, by designing three interrelated stages.

s We prototype Atlas in end-to-end slicing testbed E E
with extensive performance evaluation

«  GitHub: https://github.com/int-unl/Atlas.git
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Simulation and Configuration Space

R/

s Simulation Space

. selected according to its impact on the sim-to-real discrepancy

R/
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% Configuration Space

Configuration

Meaning

Range

selected according to its impact on the performance of slice users

% Atlas can handle more simulation and configuration space

bandwidth_ul
bandwidth_dl
mes_offset_ul
mecs_offset_dl
backhaul bw
cpu_ratio

maximum uplink PRBs
maximum downlink PRBs
uplink MCS offset [24]
downlink MCS offset [24]
transport bandwidth (Mbps)
CPU ratio of docker

[0, 50]
[0, 50]
[0, 10]
[0, 10]
[0, 100]
[0, 1.0]

Parameters Meaning

Table 2: Network configuration space

baseline_loss base loss in pathloss model (dBm)
enb_noise_figure | noise by non-ideal transceivers (dBm)
ue_noise_figure | noise by non-ideal transceivers (dBm)

backhaul bw additional transport bandwidth (Mbps)

backhaul_delay additional transport delay (ms)
compute_time additional server compute time (ms)
loading time additional loading time in UE (ms)

Table 3: Simulation parameter space




