OnSlicing: Online Endto-End Network Slicing with Reinforcement Learning

Qiang Liu, University of Nebraska-Lincoln Nakjung Choi, Nokia Bell Labs Tao Han, New Jersey Institute of Technology

IN OUR GRIT, OUR GLORY.

End-to-End Applications

- Resource competition degrades end-to-end performance of applications
 - Independent optimization in RAN, Transport, Core, MEC

End-to-End Network Slicing

Enabling dedicated end-to-end slice for each application

- Performance isolation, SLA guarantee
- Customization in performance, function, security, etc.

State-of-the-Art

Individual domain virtualization

٠

• Fail to optimize end-to-end performances

Model-based resource orchestration

Fail to capture complex correlations and network dynamics

OnSlicing

The first online end-to-end network slicing system

- End-to-end virtualization platform, i.e., RAN, TN, CN, Edge
- Intelligent model-free cross-domain resource orchestration (multi-domain, multi-slice)

Resource Orchestration

Objective

- Minimize cross-domain resource usage
- Satisfy the end-to-end performance requirements of slices and resource capacity of infrastructures
- **Degree of freedom**: virtual resources in multiple domains

Deep Reinforcement Learning

- Model-free approach, learn to orchestrate automatically
- Handle high-dim network states and complex correlations

Simulation-to-Reality Discrepancy

- Offline-train and online deploy
 - Train DRL agent in offline simulator, deploy DRL agent in online real networks

Simulation-to-reality discrepancy

- Offline simulator fails to fully represent the complex real networks
- Performance degrades if the offline trained policy is directly applied to manage real networks

Online Deep Reinforcement Learning

Online learn to orchestrate from real networks

* The simulation-to-reality discrepancy has been identified in multiple fields, e.g., robots, network.

Challenges

Performance assurance of slices

- Unawareness of constraints in policy update
- Random action exploration of DRL violates slice SLAs
- Unconstrained DRL exploitation

Scalability in distributed infrastructures

- Constraints in infrastructures, e.g., resource capacity
- Poor policy at early learning stage
 - DRL agents need lots of experiences to achieve acceptable performance

DRL Agent Design

Individualized DRL agent for each slice

- Reduce problem complexity
- Efficient to learn inherent slice characteristics

- Smooth policy improvement
 - Constrain the maximum policy update w/ proximal policy optimization (PPO)
- State space
 - Avg. channel condition, radio resource usage, server workload, cumulative cost, etc.

Action space

RAN: UL/DL BW, MCS offset, Sche. Alg., TN: BW, Path, CN/Edge: CPU/RAM

Reward function

- Negative total resource usage
- Cost function
 - Violation of slice SLA

Learning with near-zero violations

- Constraint-aware policy update method
 - Dynamic incorporate slice SLA into objective
 - Lagrangian primal-dual method

Proactive baseline switching mechanism

- Switch to a baseline policy if predicted to violate slice SLA
- Predict the statistics of cost value with variational inference (VI)

Learning in Distributed Networks

- Satisfy resource capacity in infrastructures
 - The DRL agent of slice makes decision independently
- Action modification in each agent

$$\begin{split} \min_{\hat{\mathbf{a}}^{i}} \quad \sum_{i \in \mathcal{I}} \left\{ |\hat{\mathbf{a}}_{t}^{i} - \mathbf{a}_{t}^{i}|_{2}^{2} + c(\mathbf{s}_{t}^{i}, \hat{\mathbf{a}}_{t}^{i}) \right\} \\ s.t. \quad \sum_{i \in \mathcal{I}} \hat{\mathbf{a}}_{t}^{i,k} \leq L_{\max}^{k}, \forall k \in \mathcal{K}, \end{split}$$

- Modify the action according to coordinating parameters
- Parameter coordination in each infrastructure
 - Update coordinating parameters based on resource usage

Learning from Baseline

- Poor policy at early learning stage
 - Online learning from scratch is expensive and risky

Behavior cloning

- Offline imitate the baseline policy before online learning phase
- Minimizing the action differences with supervised learning

Virtualization - RAN

Limited features in FlexRAN

- Allocating physical resource blocks (PRBs) in MAC layer
- Controls in data rate but not reliability

Radio domain manager (RDM)

- Based on FlexRAN framework
- New CQI-MCS mapping table* for each slice

Table 7.2.3-1: 4-bit CQI Table

CQI index	modulation	code rate x 1024	efficiency
0	out of range		
1	QPSK	78	0.1523
2	QPSK	120	0.2344
3	QPSK	193	0.3770
4	QPSK	308	0.6016
5	QPSK	449	0.8770
6	QPSK	602	1.1758
7	16QAM	378	1.4766
8	16QAM	490	1.9141
9	16QAM	616	2.4063
10	64QAM	466	2.7305
11	64QAM	567	3.3223
12	64QAM	666	3.9023
13	64QAM	772	4.5234
14	64QAM	873	5.1152
15	64QAM	948	5.5547

*The bit error rate (BER) is reduced if adopting a lower modulation and coding scheme under the same power allocation

Virtualization - CN

Unsupported virtualization

- All traffics share the data plane
- No isolation for different slices

Core domain manager (CDM)

- Isolated data plane (SPGW-U/UPF) with CUPS architecture
- Associate containerized a SPGW-U pool to each slice
- Determining association upon the initial attachment request of slice users

* The virtualization of transport network and edge computing are accomplished based on OpenFlow and Docker containers, respectively.

System Implementation

Testbed

٠

Slice: 3 slices (each is emulated a phone)	Agent: PyTorch 1.5 (128x64x32)	
RAN: OpenAirInterface w/ USRP (LTE & 5G NSA)	TN: OpenDayLight w/ OpenFlow SDN switch	
CN: OpenAir-CN w/ CUPS	Edge: Dockers collocated with SPGW-U	

Mobile application w/ traffic traces

- MAR: client offloads 540p images, server detects features and sends results back (latency)
- HVS: server streams 1080p video (FPS)
- RDC: server controls IoT devices (reliability)

Overall Performance

Comparison

- Model_Based: build the problem with approx. math models
- **Baseline**: regress the correlation w/ sk-learn toolbox
- OnRL: original for video telephony, enhanced to assure SLA w/ reward shaping

Learning trajectories

- OnSlicing continuously learns from real networks
- OnSlicing achieves the best performance, i.e., resource usage and SLA violation

Learning Performance

Online safe learning

- OnSlicing learns to reduce resource usage smoothly
- OnSlicing learns the intrinsic slice characteristics
- OnSlicing has near-zero violation throughout learning
- OnSlicing proactively switch to baseline for SLA guarantee

Method	Avg. res. usage (%)	Avg. SLA viol. (%)
OnSlicing	29.07	0.06
OnSlicing-NE	30.81	0.33
OnSlicing-NB	29.64	2.94
OnSlicing Est. Noise	52.91	1.03

Table 2: Avg. performance of baseline switching methods

Learning Performance

Offline imitate learning

OnSlicing quickly imitate the baseline

Online distributed coordination

- OnSlicing reacts to coordinating parameters
- Coordination is essential to maintain slice SLA

Methods	Usage (%)	Viol. (%)	Interact num.	
OnSlicing	20.2 ± 0.23	0.00 ± 0.00	1.83 ± 0.61	
OnSlicing-projection	18.2 ± 0.50	3.66 ± 2.49	1.00 ± 0.00	
OnSlicing Md. Noise	23.8 ± 1.56	2.57 ± 1.66	2.16 ± 1.08	

Table 3: Performance of action modifications

Summary

- End-to-end slicing is necessitated to assure the diverse end-to-end performance of applications
- ✤ We proposed OnSlicing, the first online end-to-end network slicing system
- OnSlicing addressed the practical challenges of online DRL, i.e., performance assurance, scalability in distributed networks and poor policy at early stage.
- OnSlicing enables the efficient resource virtualization in RAN, TN, CN and Edge.
- We prototype OnSlicing in end-to-end testbed and evaluated its performance w/ extensive experiments

Thank you! Q&A

Qiang Liu

Assistant Professor School of Computing University of Nebraska–Lincoln <u>giang.liu@unl.edu</u> <u>https://cse.unl.edu/~qliu/</u>

Intention Blank

Performance in 5G NSA

✤ 5G NSA settings

- Static MCS 9 for stability
- 40 MHz, B78, TDD
- ✤ 5G promise better performance
 - Lower resource usage and zero SLA violation

Networks	Avg. res. usage (%)	Avg. SLA violation (%)
5G NR	43.5 ± 3.27	0.00 ± 0.00
4G LTE	45.9 ± 4.48	0.66 ± 1.42

 Table 4: OnSlicing performance in 4G LTE and 5G NSA

