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End-to-End Applications
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* Resource competition degrades end-to-end performance of

applications
Independent optimization in RAN, Transport, Core, MEC
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End-to-End Network Slicing -
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* Enabling dedicated end-to-end slice for each application

Performance isolation, SLA guarantee

Customization in performance, function, security, etc.
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State-of-the-Art =———
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* Individual domain virtualization

Fail to optimize end-to-end performances
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< Model-based resource orchestration

Fail to capture complex correlations and network dynamics

7 o e :
 § 1 §  §

[ Model-based orchestration ]
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OnSlicing  —

s The first online end-to-end network slicing system

End-to-end virtualization platform, i.e., RAN, TN, CN, Edge
Intelligent model-free cross-domain resource orchestration (multi-domain, multi-slice)
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[ intelligent orchestration ]

[ end-to-end virtualization ]
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Resource Orchestration

s Objective
. Minimize cross-domain resource usage
. Satisfy the end-to-end performance requirements of slices and resource capacity of infrastructures
. Degree of freedom: virtual resources in multiple domains
s Deep Reinforcement Learning
. Model-free approach, learn to orchestrate automatically
. Handle high-dim network states and complex correlations
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Simulation-to-Reality Discrepancy

s Offline-train and online deploy
. Train DRL agent in offline simulator, deploy DRL agent in online real networks
s Simulation-to-reality discrepancy
. Offline simulator fails to fully represent the complex real networks
. Performance degrades if the offline trained policy is directly applied to manage real networks
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% Online Deep Reinforcement Learning

Online learn to orchestrate from real networks
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* The simulation-to-reality discrepancy has been identified in multiple fields, e.g., robots, network.



Challenges
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s+ Performance assurance of slices

Unawareness of constraints in policy update
Random action exploration of DRL violates slice SLAs
Unconstrained DRL exploitation
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% Scalability in distributed infrastructures

Constraints in infrastructures, e.g., resource capacity
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s Poor policy at early learning stage

DRL agents need lots of experiences to achieve acceptable performance




DRL Agent Design

*

¢ Individualized DRL agent for each slice

*
. Reduce problem complexity

. Efficient to learn inherent slice characteristics l l l
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s Smooth policy improvement
. Constrain the maximum policy update w/ proximal policy optimization (PPO)
s State space
. Avg. channel condition, radio resource usage, server workload, cumulative cost, etc.
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% Action space
. RAN: UL/DL BW, MCS offset, Sche. Alg., TN: BW, Path, CN/Edge: CPU/RAM

* Reward function
. Negative total resource usage
s Cost function

. Violation of slice SLA



Learning with near-zero violations —

s Constraint-aware policy update method

. Dynamic incorporate slice SLA into objective max E [Z r(ss at)]
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. Lagrangian primal-dual method 8 e
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*» Proactive baseline switching mechanism

. Switch to a baseline policy if predicted to violate slice SLA

. Predict the statistics of cost value with variational inference (VI)
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Learning in Distributed Networks
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s Satisfy resource capacity in infrastructures

The DRL agent of slice makes decision independently
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s Action modification in each agent st Y

Modify the action according to coordinating parameters
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s+ Parameter coordination in each infrastructure

Update coordinating parameters based on resource usage
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Learning from Baseline

s Poor policy at early learning stage
. Online learning from scratch is expensive and risky %80 ™ — :;‘l:‘“enz“
5 60 \.‘“
s Behavior cloning S a0l M
o W
. Offline imitate the baseline policy before online learning phase 250 - 5555
. Minimizing the action differences with supervised learning Number of epochs
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Virtualization - RAN

Table 7.2.3-1: 4-bit CQl Table
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*The bit error rate (BER) is reduced if adopting a lower modulation and coding scheme under the same power allocation



Virtualization - CN

s Unsupported virtualization
. All traffics share the data plane
. No isolation for different slices

/

s Core domain manager (CDM)

. Isolated data plane (SPGW-U/UPF) with CUPS architecture
. Associate containerized a SPGW-U pool to each slice
. Determining association upon the initial attachment request of slice users
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* The virtualization of transport network and edge computing are accomplished based on OpenFlow and Docker containers, respectively.



System Implementation m—

¢+ Testbed

Slice: 3 slices (each is emulated a phone) Agent: PyTorch 1.5 (128x64x32)
RAN: OpenAirinterface w/ USRP (LTE & 5G NSA)  TN: OpenDayLight w/ OpenFlow SDN switch
CN: OpenAir-CN w/ CUPS Edge: Dockers collocated with SPGW-U

s Mobile application w/ traffic traces

. MAR: client offloads 540p images, server detects features and sends results back (latency)
. HVS: server streams 1080p video (FPS)
. RDC: server controls IoT devices (reliability)
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Overall Performance =

s Comparison

. Model_Based: build the problem with approx. math models

. Baseline: regress the correlation w/ sk-learn toolbox

. OnRL.: original for video telephony, enhanced to assure SLA w/ reward shaping
s Learning trajectories

. OnSlicing continuously learns from real networks

. OnSlicing achieves the best performance, i.e., resource usage and SLA violation
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Learning Performance

% Online safe learning
. OnSlicing learns to reduce resource usage smoothly Method Avg. res. usage (%) _Avg. SLA viol. (%)
.- L - OnSlicing 29.07 0.06 i
. OnSlicing learns the intrinsic slice characteristics OnSlicing-NE 30.81 033
. OnSlicing has near-zero violation throughout learning OnSlicing-NB 2964 294
o . . . OnSlicing Est. Noise 52.91 1.03
. OnSlicing proactively switch to baseline for SLA guarantee 1,11 - Avg. performance of baseline switching methods
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Learning Performance

s Offline imitate learning
. OnSlicing quickly imitate the baseline Methods Usage (%) | Viol. (%) | Interact num.
. OnSlicing 20.2+0.23 | 0.00+0.00] 1.83 061

* Online distributed coordination OnSlicing-projection | 18.2 + 0.50 E 366+ 2491 100 % 0.00

OnSlicing Md. Noise | 23.8 £ 1.56 | 2.57 + 1.66 i 216 108

. OnSlicing reacts to coordinating parameters
. Coordination is essential to maintain slice SLA

Table 3: Performance of action modifications
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Summary —

%  End-to-end slicing is necessitated to assure the diverse end-to-end performance of
applications

% We proposed OnSlicing, the first online end-to-end network slicing system

% OnSlicing addressed the practical challenges of online DRL, i.e., performance
assurance, scalability in distributed networks and poor policy at early stage.

% OnSlicing enables the efficient resource virtualization in RAN, TN, CN and Edge.

»  We prototype OnSlicing in end-to-end testbed and evaluated its performance w/
extensive experiments
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Performance in 5G NSA

s 595G NSA settings

. Static MCS 9 for stability Networks | Avg. res. usage (%) Avg. SLA violation (%)
5G NR 43.5 £ 3.27 0.00 = 0.00
’ 40 MHz, B78, TDD 4G LTE 459 + 4.48 0.66 + 1.42
o 56 prom ise better pe rformance Table 4: OnSlicing performance in 4G LTE and 5G NSA

. Lower resource usage and zero SLA violation
210 — >1.0 [ —
= | f = = | TE, MAR ﬂ i f
©08 © 087 == LTE Hvs i
2 / o —. LTE,RDC | ! ﬂ
2 0.6 5067 |
a / o NR, MAR i\ { } J
0] ‘
> 0.4 2041~ NRHVS -
© © NR,RDC b0 ]
= 1 LTE 5 ' 1]
3 / — o = ,rjr

0.0 - - - 0.0 —2== — -

10 20 30 40 0.5 1.0 15

Ping delay (ms) Slice performance



	OnSlicing: Online End-to-End Network Slicing with Reinforcement Learning
	End-to-End Applications
	End-to-End Network Slicing
	State-of-the-Art
	OnSlicing
	Resource Orchestration
	Simulation-to-Reality Discrepancy
	Challenges
	DRL Agent Design
	Learning with near-zero violations
	Learning in Distributed Networks
	Learning from Baseline
	Virtualization - RAN
	Virtualization - CN
	System Implementation
	Overall Performance
	Learning Performance
	Learning Performance
	Summary
	 
	Intention Blank
	Performance in 5G NSA

