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End-to-End Applications

 Resource competition degrades end-to-end performance of 
applications
• Independent optimization in RAN, Transport, Core, MEC
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End-to-End Network Slicing

 Enabling dedicated end-to-end slice for each application
• Performance isolation, SLA guarantee

• Customization in performance, function, security, etc.
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State-of-the-Art

 Individual domain virtualization
• Fail to optimize end-to-end performances

 Model-based resource orchestration
• Fail to capture complex correlations and network dynamics
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OnSlicing

 The first online end-to-end network slicing system
• End-to-end virtualization platform, i.e., RAN, TN, CN, Edge

• Intelligent model-free cross-domain resource orchestration (multi-domain, multi-slice)
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Resource Orchestration

 Objective
• Minimize cross-domain resource usage

• Satisfy the end-to-end performance requirements of slices and resource capacity of infrastructures

• Degree of freedom: virtual resources in multiple domains

 Deep Reinforcement Learning
• Model-free approach, learn to orchestrate automatically 

• Handle high-dim network states and complex correlations
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Simulation-to-Reality Discrepancy

 Offline-train and online deploy
• Train DRL agent in offline simulator, deploy DRL agent in online real networks

 Simulation-to-reality discrepancy 
• Offline simulator fails to fully represent the complex real networks

• Performance degrades if the offline trained policy is directly applied to manage real networks

 Online Deep Reinforcement Learning
• Online learn to orchestrate from real networks
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* The simulation-to-reality discrepancy has been identified in multiple fields, e.g., robots, network. 



Challenges

 Performance assurance of slices
• Unawareness of constraints in policy update

• Random action exploration of DRL violates slice SLAs

• Unconstrained DRL exploitation

 Scalability in distributed infrastructures
• Constraints in infrastructures, e.g., resource capacity

 Poor policy at early learning stage
• DRL agents need lots of experiences to achieve acceptable performance



DRL Agent Design

 Individualized DRL agent for each slice
• Reduce problem complexity

• Efficient to learn inherent slice characteristics

 Smooth policy improvement
• Constrain the maximum policy update w/ proximal policy optimization (PPO)

 State space
• Avg. channel condition, radio resource usage, server workload, cumulative cost, etc.

 Action space
• RAN: UL/DL BW, MCS offset, Sche. Alg., TN: BW, Path, CN/Edge: CPU/RAM

 Reward function
• Negative total resource usage

 Cost function
• Violation of slice SLA



Learning with near-zero violations

 Constraint-aware policy update method 
• Dynamic incorporate slice SLA into objective

• Lagrangian primal-dual method

 Proactive baseline switching mechanism
• Switch to a baseline policy if predicted to violate slice SLA

• Predict the statistics of cost value with variational inference (VI)
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Learning in Distributed Networks

 Satisfy resource capacity in infrastructures
• The DRL agent of slice makes decision independently

 Action modification in each agent
• Modify the action according to coordinating parameters

 Parameter coordination in each infrastructure
• Update coordinating parameters based on resource usage
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Learning from Baseline

 Poor policy at early learning stage
• Online learning from scratch is expensive and risky

 Behavior cloning
• Offline imitate the baseline policy before online learning phase

• Minimizing the action differences with supervised learning
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Virtualization - RAN

 Limited features in FlexRAN
• Allocating physical resource blocks (PRBs) in MAC layer

• Controls in data rate but not reliability

 Radio domain manager (RDM)
• Based on FlexRAN framework

• New CQI-MCS mapping table* for each slice
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*The bit error rate (BER) is reduced if adopting a lower modulation and coding scheme under the same power allocation
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Virtualization - CN

 Unsupported virtualization
• All traffics share the data plane

• No isolation for different slices

 Core domain manager (CDM)
• Isolated data plane (SPGW-U/UPF) with CUPS architecture

• Associate containerized a SPGW-U pool to each slice

• Determining association upon the initial attachment request of slice users

* The virtualization of transport network and edge computing are accomplished based on OpenFlow and Docker containers, respectively. 
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System Implementation

 Testbed

 Mobile application w/ traffic traces
• MAR: client offloads 540p images, server detects features and sends results back (latency)

• HVS: server streams 1080p video (FPS)

• RDC: server controls IoT devices (reliability)
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Slice: 3 slices (each is emulated a phone) Agent: PyTorch 1.5 (128x64x32)

RAN: OpenAirInterface w/ USRP (LTE & 5G NSA) TN: OpenDayLight w/ OpenFlow SDN switch

CN: OpenAir-CN w/ CUPS Edge: Dockers collocated with SPGW-U



Overall Performance

 Comparison
• Model_Based: build the problem with approx. math models 

• Baseline: regress the correlation w/ sk-learn toolbox

• OnRL: original for video telephony, enhanced to assure SLA w/ reward shaping

 Learning trajectories
• OnSlicing continuously learns from real networks

• OnSlicing achieves the best performance, i.e., resource usage and SLA violation



Learning Performance

 Online safe learning
• OnSlicing learns to reduce resource usage smoothly

• OnSlicing learns the intrinsic slice characteristics

• OnSlicing has near-zero violation throughout learning

• OnSlicing proactively switch to baseline for SLA guarantee



Learning Performance

 Offline imitate learning
• OnSlicing quickly imitate the baseline

 Online distributed coordination 
• OnSlicing reacts to coordinating parameters

• Coordination is essential to maintain slice SLA



Summary
 End-to-end slicing is necessitated to assure the diverse end-to-end performance of 

applications

 We proposed OnSlicing, the first online end-to-end network slicing system

 OnSlicing addressed the practical challenges of online DRL, i.e., performance 
assurance, scalability in distributed networks and poor policy at early stage. 

 OnSlicing enables the efficient resource virtualization in RAN, TN, CN and Edge. 

 We prototype OnSlicing in end-to-end testbed and evaluated its performance w/ 
extensive experiments 
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Performance in 5G NSA

 5G NSA settings
• Static MCS 9 for stability

• 40 MHz, B78, TDD

 5G promise better performance
• Lower resource usage and zero SLA violation
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